If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x-47=0
a = 1; b = -10; c = -47;
Δ = b2-4ac
Δ = -102-4·1·(-47)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-12\sqrt{2}}{2*1}=\frac{10-12\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+12\sqrt{2}}{2*1}=\frac{10+12\sqrt{2}}{2} $
| x2-x=2 | | 0.2×20+1×x=0.25(20+x) | | w2+3=20 | | 2+7=x-8 | | 2−(−3a−8)=1 | | w2+3=3 | | 2y+54=11y | | 2x-14=2x- | | (4-a)(a-3)(a-4)=0 | | (3x-7)+(2x+3)=90 | | 4.25x+7=53.75 | | 2(3x+7)=-4+8 | | 3y-2/5=1/2 | | 6x+9=6x+ | | 3x-7+2x+3=90 | | 6p-4=9 | | -6+5=2n-67 | | w/4.85=1.4 | | w/4.85=1.3 | | -5(-5x-8)=-85 | | 10+3x=x-2 | | y+25=57 | | 16^x-6•4^x=-5 | | y=1.04(35)+44.8 | | 2a-20.8=a-3.5 | | -14+32=-6g+48 | | 10f^2+21f+2=0 | | x/3+(3+x/6)=3 | | 10f2+21f+2=0 | | 3x+6=153 | | 10^-2x=94 | | 7y+17=122 |